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Pavement surface profiles induce dynamic ride responses in vehicles which can

potentially be used to classify road surface roughness. A novel method is proposed for

the characterisation of pavement roughness through an analysis of vehicle accelerations.

A combinatorial optimisation technique is applied to the determination of pavement

approach, using low-cost inertial sensors, would provide an inexpensive alternative to

the costly laser-based profile measurement vehicles. The concept is numerically

validated using a half-car roll dynamic model to infer measurements of road profiles

in both the left and right wheel paths.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Road profiles are an intrinsic part of the interaction between a pavement and/or bridge and a heavy vehicle suspension.
As such, it is generally accepted that the maintenance of smooth road profiles for highways and bridges is of major
importance in minimising dynamic tyre forces, promoting long pavement life spans and ensuring that bridge loads are
small [1–3]. This paper outlines a novel approach for the characterisation of road profiles using low-cost accelerometer
measurements.

Currently, there exist several methods for the measurement of road surface profiles. Static methods, such as the use of
rod and level equipment or specialised ‘dipstick’ walking profilometers, are slow and time consuming. The use of dynamic
methods, such as inertial profilometers which measure single (and often multiple) profile tracks at typical highway
velocities, allows for large scale and continuous pavement measurement regimes. The typical inertial profilometer consists
of a vehicle equipped with a height sensing device, such as a laser, which measures pavement elevations at regular intervals
[4,5]. Accelerometer(s) mounted on the vehicle allow the effects of vehicle dynamics to be removed from the elevation
measurements, resulting in a measured profile. This method provides an accurate, high-resolution measurement of road
profile, though the associated costs of laser-based technology are a disadvantage. Imine et al. [6] describe a technique for
road profile input estimation based on the measured dynamic response of an instrumented vehicle. The method proposed
uses a full car sprung mass model to estimate profile heights using as input the wheel vertical accelerations and vertical
displacement and rotation of the vehicle body. The authors compare the results obtained to those of an inertial
profilometer and to that of the ‘longitudinal profile analyzer’; a profile measuring device designed at Laboratoire Central
des Ponts et Chaussées (LCPC). Fair agreement is found for the proposed method, with noticeable local discrepancies in the
estimated profile.
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González et al. [7] propose an easy-to-implement road classification method based on the relationship between the
power spectral densities of vehicle accelerations and road profile via a transfer function. This frequency-domain method
generally classifies the road into the appropriate class, but it is unable to calculate the height of the road irregularities at
each point in time.

In order to infer a desired series of road profile elevations from measurements of vehicle response to them, the new
method proposed herein uses of a combinatorial optimisation technique, known as the cross-entropy method [8]. Initially,
the parameters of a representative vehicle model are determined by examining the vertical acceleration response of the
vehicle to a known excitation (e.g. an obstacle such as bump, or a road profile which is already known). Using this
calibrated vehicle, unknown road profiles may then be characterised by optimising to find the road profile which replicates
the measured response. The proposed method is tested using simulated acceleration measurements, taken from the
unsprung and sprung masses for a number of road profiles.

2. Cross-entropy method for combinatorial optimisation

The inference of unknown model parameters is a complex and computationally intensive problem, usually requiring the
exploration of large, multidimensional solution spaces in order to yield an answer. This process, known as combinatorial
optimisation, may be informally defined as a problem where the set of feasible solutions is discrete and the goal is to
determine the best possible solution. The preferred optimisation method used for this study is the cross-entropy (CE)
method which is an iterative approach that employs Monte Carlo simulation to arrive at an optimal solution. The CE
method is chosen due to its relative ease of implementation and its ability to avoid becoming stuck in local optima [8,9].

The CE method is an iterative process, which involves two distinct phases:
(1)
 Generation of a sample of random data (e.g. in this case, vehicle model parameters or pavement elevations) according
to a specified random mechanism.
(2)
 Updating of the parameters of the random mechanism in order to produce an improved sample in the next generation.
More formally, the process, adapted from De Boer et al. [8], is described as follows:
Consider a finite set of states, X, which, for example, may contain all possible values for the parameters of some vehicle

ride model. Let S then be a real-valued function on X which describes some measurable output, such as vertical
accelerations. There must then be an array of optimal states, w*, that maximises S, i.e.:

Sðw�Þ ¼max
w2X

SðwÞ (1)

Eq. (1) is a general definition of an optimisation problem. When w consists of more than one parameter, it becomes a
combinatorial optimisation problem. In order to arrive at an estimation of w*, a set of Nw iid (independent and identically
distributed) random samples of w are generated from the probability distribution characterised by the set of parameters, v

(e.g. mean, standard deviation):

x1; x2; . . . ; xN�f ðwjvÞ (2)

where f(w|v) is some probability distribution (e.g. Gaussian, lognormal, etc.). Usually, the distribution is assumed to be
Gaussian and thus v contains the means and variances of the distribution. Because at the beginning of the optimisation
process, little is known about the parameters, one may select arbitrary mean values and very large variances to reflect the
lack of knowledge about possible values for w. For each randomly generated w1,2,y the performance function, S(w), is
evaluated. From this, the sample ð1� rÞ quantile is determined, i.e. if r=0.9, then the top 10 percent of answers are taken.
An updated estimate, v̂, of the probability distribution parameters is then obtained by taking the mean and variance of the
samples from the ð1� rÞ quantile. This process is repeated until a stopping criterion is reached, such as a finite number of
generations or convergence of estimates.

Fig. 1 outlines the general CE algorithm as implemented for this study. The stopping criterion for the algorithm is simply
based on the number of generations. This was found, empirically, to be sufficient. After half of the generations are
completed, the variance parameters in v̂ are widened in order to reduce the chances of becoming stuck in a local maximum
of the solution space.

Fig. 2 shows the operation of the CE method for a simple mathematical function with two maxima. The objective is to
find the value of y which maximises the function f(y) (the solid line in the graph). The dashed line shows the probability
distribution used to draw samples, w, for each generation, shown as circles. As the optimisation process progresses, the
sampling distribution is updated by taking the mean and variance of the top 10 percent of values which maximise f(y). The
algorithm swiftly converges to the maximum value of y=2.

3. Characterisation of vehicle model parameters

Initially, it is necessary to determine the unknown vehicle model parameters based on observed measurements of
vehicle response due to a known disturbance, e.g. a bump or a known road profile. This may be subsequently used to
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Fig. 1. CE combinatorial optimisation algorithm process.

Fig. 2. Progression of CE algorithm for simple mathematical function with two maxima ( ), showing samples ( ) and the sampling distribution ( )

for successive generations of the algorithm.
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specify a reference vehicle model for the characterisation of unknown pavement profile heights. A half-car roll model
(Fig. 3) is used for this purpose since it will be shown later that it is possible to infer two parallel profiles in the left and
right wheel paths with this model.

The half-car roll model has four DOFs to account for the axle hop, sprung mass heave and sprung mass rolling motions
induced by different road profiles underneath the left and right wheel paths. By assuming negligible tyre damping [10],
there are up to 11 unknown parameters associated with the model; the vehicle sprung mass and roll inertia, the unsprung
mass, suspension stiffness, damping coefficient and tyre stiffness for both the left and right sides and, finally, the track
width of the model. By assuming symmetry (geometrically and of suspension components) and deeming the track width,
2T, to be easily measurable, the model is thus reduced to six unknowns: ms, Is, mu, k, kt, and cb.
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Fig. 3. Half-car roll vehicle model.

Table 1
Vehicle model parameters.

Description Unit Symbol Value

Sprung mass kg ms 500

Unsprung mass kg mu1 25

mu2 25

Suspension stiffness kN m�1 k 20

Tyre stiffness kN m�1 kt 150

Passive damping coefficient kN s m�1 cb 1.5

Roll moment of inertia kg m2 Ir 750

Track width (known parameter) m T 0.75
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The half-car equations of motion for the heave and roll at the centre of gravity of the sprung mass, ys and fs,
respectively, and axle hop motions, yu1 and yu2, are given by

ms €ys þ Fs1 þ Fs2 ¼ 0 (3)

Is
€fs þ TFs1 � TFs2 ¼ 0 (4)

mu €yui þ Fsi � Fri ¼ 0; i ¼ 1;2 (5)

Assuming a small roll angle, the quantity Fsi, which denotes the suspension force generated above wheel i, can be expressed
by Eq. (6), while the corresponding tyre force at wheel i, Fri, is given by Eq. (7):

Fsi ¼ kðys � ð�1ÞiTfs � yuiÞ þ cbð _ys � ð�1ÞiT _fs � _yuiÞ; i ¼ 1;2 (6)

Fri ¼ ktðyui � riÞZ� Pi; i ¼ 1;2 (7)

Eq. (7) imposes a lower bound on dynamic tyre force, allowing the model to lose contact with the road if the upwards
dynamic force exceeds the static weight, Pi, of the vehicle at wheel i, given by

Pi ¼ gðmu þ 0:5msÞ; i ¼ 1;2 (8)

where g is the acceleration due to gravity. The sprung mass accelerations above each suspension, €ys1 and €ys2, can be
obtained from

€ysi ¼ €ys � ð�1ÞiT €fs; i ¼ 1;2 (9)

Table 1 lists the vehicle model parameters used for the simulations, which are within a range of typical values for
passenger cars [11–14]. These represent the ‘true’ answer sought through the CE optimisation.

3.1. Objective function for optimisation

By the CE optimisation process given in Section 2, a performance function is defined to evaluate the suitability of
solutions proposed by the algorithm. This is taken to be a relatively simple least squares minimisation of the difference,
over Nj time steps, between the observed data and the simulated outputs (using the proposed solutions) of the vehicle
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model. It is represented by the function S(w) in Eq. (10) that needs to be maximised:

SðwÞ ¼
�XNj

j¼1

ðAobsðtjÞ � Asimðw; tjÞÞ
2
��1

(10)

where tj is the jth time step. The vehicle response functions, Aobs(t) and Asim(w,t) are specified based on the combination of
acceleration measurements taken from the vehicle.

3.2. Road profile inputs

The characterisation of the vehicle model parameters is investigated for both an artificially generated road profile and
for a simple bump input. These are assumed to be known inputs to the simulation model. The road profile used is 100 m in
length and is of ISO class A roughness (very good quality highway) [15]. A sinusoidal bump of amplitude 20 mm is also
used, with bump wavelengths of 0.25, 0.5, 1.0, 1.5 and 2.0 m. In each case, the vehicle velocity is constant at 80 km h�1.

3.3. Sources of ‘observed’ data

This study considers the use of acceleration measurements as the reference sources of observed data for the
optimisation. For the half-car model, it is assumed that four measurement sources are available—the accelerations at each
wheel ( €yu1 and €yu2) and the sprung mass accelerations above each suspension ( €ys1 and €ys2). The vehicle response function,
introduced in Eq. (10), is thus written as

AðtÞ ¼ Z1
€yu1ðtÞ þ Z2

€yu2ðtÞ þ Z3
€ys1ðtÞ þ Z4

€ys2ðtÞ (11)

where Z1 to Z4 are weighting parameters which denote the relative importance each acceleration source has in the
response function. To assign equal importance to each measurement source in the function:

Z1 ¼ RMSð €yu2ðtÞÞ � RMSð €ys1ðtÞÞ � RMSð €ys2ðtÞÞ

Z2 ¼ RMSð €yu1ðtÞÞ � RMSð €ys1ðtÞÞ � RMSð €ys2ðtÞÞ

Z3 ¼ RMSð €yu1ðtÞÞ � RMSð €yu2ðtÞÞ � RMSð €ys2ðtÞÞ

Z4 ¼ RMSð €yu1ðtÞÞ � RMSð €yu2ðtÞÞ � RMSð €ys1ðtÞÞ (12)

where RMS denotes the root mean square of the specified acceleration response. It is also important to note that the use of
accelerations as target measurements means that information about the absolute values of the unknown parameters
cannot be obtained. Rather, the algorithm must determine the relative ratios of each unknown with respect to the others.
The optimisations discussed herein are initiated by setting the unknown sprung mass parameter for both vehicle models to
be fixed at an arbitrary value (say, 100 kg) and determining the other unknowns relative to this. The success of the
optimisation may then be judged on the accuracy of these ratios.

3.4. Results of optimisation

The optimisation is run for the vehicle model at 80 km h�1, using the class A road profile as a known input and the
measured accelerations as the known outputs for the problem. The CE algorithm uses a population size, Nw, of 250 samples
for two stages of 20 generations. As discussed, the sprung mass unknown is held constant at an arbitrary value and thus the
number of unknowns is reduced to five. These unknown parameters are sought using the CE optimisation process. The
optimisation is tested to obtain the best parameters for 10 runs of the algorithm using the class A road (with different, but
correlated left and right wheel paths) and the five sinusoidal bumps of varying wavelengths. In order to induce roll in the
model, the sinusoidal bumps are only applied to the left wheel. The results, shown in Fig. 4, indicate the least error in
estimation of parameters occurs for the pair of road profiles, whilst the bumps do not seem to be effective, particularly for
determining roll inertia, Is.

Fig. 5 shows the unsprung mass accelerations for the vehicle model using the optimised parameters determined with
the class A road as the known input, indicating an excellent match to the observed data. To assign a numerical value to the
quality of fit, the normalised RMS error parameter (NRE) is used [15]. This is given by the RMS error between the observed
and predicted vehicle performance functions for the half-car (Eq. (11)), as a percentage of the RMS of the corresponding
observed vehicle performance function:

NRE ¼
RMSðAobsðtÞ � Asimðw�; tÞÞ

RMSðAobsðtÞÞ
� 100 (13)

The NRE for the best fit vehicle response function is determined to be 9.3 percent. Given that the NRE appears to be quite a
sensitive measure of accuracy, these results are considered to be satisfactory, particularly since it is clear from the graph
that good fits are obtained.
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Fig. 4. Comparison of excitation inputs for half-car optimisation: Sine bump with l=0.25 m (þ), sine bump for l=0.5 m (*), sine bump for l=1.0 m (o), sine

bump for l=1.5 m (� ), sine bump for l=2.0 m (&), and class A road profile (B).

Fig. 5. Observed ( ) and difference between observed and best predicted ( ) unsprung mass accelerations for vehicle model.

N.K. Harris et al. / Journal of Sound and Vibration 329 (2010) 497–508502
4. Characterisation of pavement profile heights

The previous section describes the determination of unknown vehicle model parameters based upon the known
excitations due to the road profile. As such, the problem consists of determining the parameters of the half-car model using
known inputs (road profile(s)) and known outputs (accelerations). This section discusses finding the problem of unknown
road profile heights in the same manner. Here, the problem to be addressed involves optimising to find the unknown inputs
to a fully characterised process model (known vehicle parameters, etc.) which cause a set of known acceleration responses.
Again, the CE method is used to determine the optimal solution set.
4.1. Optimisation process for unknown profile heights

The process employed for the characterisation of a set of unknown profile heights is as follows:
1.
 The unknown road profile is idealised as an optimisation problem with Nh unknowns, where Nh ¼ L=D is the number of
unknown changes in height between each interval for a length, L, of road with spacing, D. For this study, D is taken as
0.1 m, which corresponds to a spatial frequency of 10 cycles/m (upper bound in the ISO definition of power spectral
density functions for the generation of artificial road profiles [15]). If two profile paths are being determined, the
number of unknowns is doubled.
2.
 The optimisation problem is split into a number of phases, in which a smaller ‘window’ of the road profile is determined
before proceeding to the next phase. This greatly reduces the dimensionality of the optimisation problem. A 1.0 m
window is used, meaning that only 20 unknowns for the half-car are considered at any one time.
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3.
Fig
The CE optimisation process is used to determine the optimal set of height changes within the window which
maximises the performance function, S(w). Initially, all height changes are assumed to have a mean of 0 mm and a
standard deviation of 1 mm.
4.
 When the profile heights in the window have been optimised, the algorithm proceeds to the next phase. The first half of
the window is retained (i.e. 0.5 m of road heights), thus ‘building’ the unknown profile as the phases progress.
5.
 The heights in the second half of the window are used as the starting elevations for the next phase (i.e. locations 6–10).
The starting elevations for locations 11–15 are the same as for location 10. For each unknown elevation in the next
phase, the initial standard deviation is increased on a sliding scale from 0.1 mm at location 6 to 1.0 mm at location 15.
This is to reflect the relative uncertainty in estimates further along the window being analysed.
The process is repeated until all Nh elevations have been characterised. These form the estimated road profile, rest, which
may subsequently be post-processed to determine ride statistics such as the IRI. IRI is a standardized roughness
measurement of the longitudinal profile of a wheel track, it has units of slope and it is calculated as a filtered ratio of a
standard vehicle’s accumulated suspension motion (i.e. in mm) divided by the distance travelled by the vehicle during the
measurement (i.e. in km) [5].
. 6. Actual road profiles used for numerical validation ( ) left wheel path ( ) right wheel path: (a) AR 1; (b) AR 2; (c) AR 3; (d) AR 4; and (e) AR 5.



ARTICLE IN PRESS

Table 2
Details of road profiles used for numerical validation.

ISO Class Gd(n0) (m3 cycle�1) IRI (left/right) (m km�1) rr

AR 1 Class A 8�10�6 1.07 1.02 0.968

AR 2 Class A 16�10�6 2.27 2.11 0.931

AR 3 Class B 64�10�6 3.09 2.96 0.936

AR 4 Class B/Class C 128�10�6 6.18 6.28 0.922

AR 5 Class C 256�10�6 8.57 8.29 0.926

Fig. 7. Estimated road profiles versus distance ( ) left wheel path ( ) right wheel path, and errors in estimation ( ) left wheel path ( ) right wheel

path: (a) AR 2 and (b) AR 4.

N.K. Harris et al. / Journal of Sound and Vibration 329 (2010) 497–508504
5. Numerical validation of algorithm

The algorithm is numerically validated using several artificially generated road profiles of varying roughness. Each of the
profiles A(rtificial)R(oad)1—AR5, shown in Fig. 6, are 100 m in length, range from class A to class C roughness according to
ISO standards [15] and have IRI ratings ranging from 1.07 to 8.58 m km�1. In each case shown, the profile for the right wheel
path is offset from the left path for clarity. Table 2 lists, for each profile, the reference spatial frequency, Gdðn0Þ, used to
generate the profiles, the corresponding IRI values and the correlation, rr, between the left and right profiles. All post-
processing work (such as filtering, calculation of IRI and analysis of spectral densities) carried out on the road profiles in
this study is done using ProVAL (Profile Viewing and AnaLysis [16]). This is a freely available dedicated software package for
such analyses, developed through the US Federal Highway Administration (FHWA) and the Long Term Pavement
Performance Programme (LTPP).

For each of the road profiles, the half-car vehicle model is run at 80 km h�1 and the acceleration responses are taken for
use as the inputs to the profile inference algorithm. Finally, the assumption is made here that the vehicle parameters can be
fully specified using the approach described in Section 3 or an alternative procedure—thus the actual parameters (given in
Table 1) are used in the validation. The approach proposed here to calculate the road profile using CE is also applicable to
other vehicle models or configurations once the model parameters have been defined accurately.

The computational time required for the algorithm to estimate the profile of both wheel paths for one of the profiles
shown in Fig. 6 was about 5 h with a 3 GHz processor, 6 MB cache and 3072 MB SDRAM running on Matlab. The results of
the road profile inferences for AR2 (class A) and AR4 (class B/C) are shown in Figs. 7(a) and (b), respectively. The error in the
estimation at each location is plotted in a secondary vertical axis. For clarity, only the last 25 m of the estimation are
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Fig. 8. Actual ( ) and estimated ( ) PSDs of road heights for left wheel of half-car: (a) AR 1; (b) AR 2; (c) AR 3; (d) AR 4; and (e) AR 5.
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represented. This last quarter of the profile is where errors are more obvious although still small compared to the actual
road irregularities. It can be seen that the algorithm has determined the road profile in the left and right wheel paths,
capturing both the short and long wavelength components to a high degree of accuracy. It has been noted that in some
cases, there is a gradual drifting effect to the estimated road profile, increasing with distance from the origin. This is an
unavoidable effect associated with errors in the estimation of the target accelerations. Any differences in the simulated and
observed accelerations will manifest as larger quadratic errors in the estimated profile because they are double-integrated
with respect to time.

The corresponding actual and estimated power spectral densities (PSDs) of the profile heights for the left wheel path are
shown in Fig. 8. Again, good agreement is obtained between actual and estimated profiles. Similar levels of accuracy are
obtained for the profiles of the right wheel path. The main differences in the respective PSDs occur for the far left and right
ends of the spectrum. There are some errors in estimating the high frequency, short wavelength components of the road
profile (wavenumbers corresponding to excitation inputs 450 Hz) and also some small errors for low frequency, long
wavelengths, though this is less clear due to the logarithmic plot. These low-frequency errors are a manifestation of a
drifting effect.

It is also found that in order to initialise the algorithm correctly, it is necessary to specify the initial relative difference in
the heights of both profile paths. This is because the algorithm finds all profile elevations relative to an initial profile height
of 0 m. If one profile path is initially higher than the other then this information must be included when employing the
algorithm. It is assumed that this initial relative height difference can be easily measured using an inclinometer or similar
device and as such, is considered a known input.
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Table 3
Comparison of estimated and true IRI values for each profile.

Profile no. Left/right wheelpaths

IRIleft (est) Err (%) IRIright (est) Err (%)

AR 1 1.08 0.9 1.03 1.0

AR 2 2.28 0.4 2.11 0

AR 3 3.10 0.3 2.97 0.7

AR 4 6.21 0.5 6.33 0.8

AR 5 8.52 0.6 8.33 0.5

Fig. 9. Moving average error in estimated profile from noise-free accelerations in left wheel path ( ), from corrupted accelerations in left wheel path

( ), from noise-free accelerations in right wheel path ( ), from corrupted accelerations in right wheel path ( ) for half-car algorithm. Left wheel

path (solid) and right wheel path (dotted), noise-free (thin) and corrupted data (thick): (a) AR 2 and (b) AR 4.

N.K. Harris et al. / Journal of Sound and Vibration 329 (2010) 497–508506
5.1. IRI ratings for characterised profiles

The IRIs of the estimated profiles are calculated and compared to the true values from the original profiles. The results
are summarised in Table 3. Each characterised road profile has an IRI value within 72 percent of those for the true profiles.
This indicates that in theory, the method proposed has the potential to measure road roughness to a class I standard [6].
Further, the accuracy of the method does not appear to be influenced by the level of roughness present, with similar
accuracies obtained for profiles AR1 through to AR5.

Despite this, the accuracy of the method would almost certainly be lower outside the realms of a numerical validation.
The potential errors associated with modelling approaches (e.g. the assumption of linearity or mis-estimation of model
parameters) or cumulative drift effect from double integrating accelerometer readings could lead to a reduction in accuracy
in practice. Noise is other source of inaccuracy that will introduce deviations in the estimated profile.
5.2. Influence of noise on accuracy of the algorithm

The input half-car acceleration signals for profiles AR2 and AR4 are corrupted with noise using an additive noise model
with a signal to noise ratio of 20 (i.e. noise is randomly added to the true accelerations by sampling a normal distribution of
zero mean and standard deviation equal to the standard deviation of the true acceleration data divided by 20). Fig. 9 shows
10-point moving average trends for the differences between the estimated and the actual road profiles when using noise-
free or corrupted accelerations. Fig. 10 shows the actual, estimated and the noise-corrupted PSDs of road profile heights for
the left wheel path. The figures show similar results to those for the uncorrupted data, except that the gradual drifting
effect which was seen for the original estimated road profiles increases slightly with noise and higher road roughness. This
drifting effect will become more important for higher levels of noise. The main differences in the respective PSDs occur for
the far left and right ends of the spectrum as for the original estimated profiles.

Table 4 presents the estimated IRI for the level of noise being tested with no significant loss of accuracy with respect to
the noise-free data.
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Fig. 10. Actual ( ), estimated ( ) and estimated with noise (�) PSDs for left wheel of half-car: (a) AR 2 and (b) AR 4.

Table 4
Comparison of estimated (from corrupted measurements) and true IRI values.

Profile no. Left/right wheelpaths

IRIleft (est) Err (%) IRIright (est) Err (%)

AR 2 2.28 0.4 2.11 0

AR 4 6.22 0.6 6.32 0.6

N.K. Harris et al. / Journal of Sound and Vibration 329 (2010) 497–508 507
6. Summary

A novel method for the characterisation of road surface profiles using measurements of vehicle acceleration response
has been described. The method proposes the use of a combinatorial optimisation technique to determine the road input
which causes a set of observed responses in a known vehicle model. The process is described for the characterisation of two
parallel profiles, using a half-car roll model. Initially, the specification of a vehicle ride model for use in the algorithm is
discussed. Using a known input, it is shown that the parameters of a half-car model can be found. It is also noted that the
best results are obtained when the known excitation input has a wide enough spectral content to excite the vehicle model
sufficiently.

The pavement characterisation algorithm is numerically validated for several artificial road profiles. The estimated road
heights are found to provide a very good fit to the true profiles, with the IRI values consistently within 72 percent of the
reference values. The errors in the estimated profiles are generally confined to frequencies which have little influence on
the vehicle model responses, such as short wavelength, high-frequency errors and long wavelength errors due to drift. The
addition of low levels of noise to the simulated accelerations has not affected the accuracy of the profile estimation
significantly.
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